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Section A (36 marks)

1 Find the exact value of ( )cos dx x1 2
1

0

2
1

+
ry . [3]

2 The functions f(x) and g(x) are defined by f(x) = ln x and g(x) = 2 + ex, for x > 0.

 Find the exact value of x, given that fg(x) = 2x. [5]

3 Find ln dxx x
1

4
2
1-y , giving your answer in an exact form. [5]

4 By sketching the graphs of y x2 1= +  and y x=-  on the same axes, show that the equation x x2 1+ =-  
has two roots. Find these roots. [4]

5 The volume V m3 of a pile of grain of height h metres is modelled by the equation

V h4 1 43= -+ .

 (i) Find d
d
h
V  when h = 2. [4]

 At a certain time, the height of the pile is 2 metres, and grain is being added so that the volume is increasing 
at a rate of 0.4 m3 per minute.

 (ii) Find the rate at which the height is increasing at this time. [3]

6 Fig. 6 shows part of the curve sin 2y = x - 1. P is the point with coordinates (1.5, 12
1
r) on the curve.
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Fig. 6

 (i) Find d
d
x
y

 in terms of y. 

  Hence find the exact gradient of the curve sin 2y = x - 1 at the point P. [4]

 The part of the curve shown is the image of the curve y = arcsin x under a sequence of two geometrical 
transformations.

 (ii) Find y in terms of x for the curve sin 2y = x - 1.

  Hence describe fully the sequence of transformations. [4]
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7 You are given that n is a positive integer.

 By expressing x2n - 1 as a product of two factors, prove that 22n - 1 is divisible by 3. [4]

Section B (36 marks)

8 Fig. 8 shows the curve y
x
x

4
=

+
 and the line x = 5. The curve has an asymptote l.

 The tangent to the curve at the origin O crosses the line l at P and the line x = 5 at Q.

y
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O 5

l

Fig. 8

 (i) Show that for this curve 
( )d

d
x
y

x
x

2 4
8

2
3=

+

+ . [5]

 (ii) Find the coordinates of the point P. [4]

  (iii) Using integration by substitution, find the exact area of the region enclosed by the curve, the tangent 
OQ and the line x = 5. [9]
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9 Fig. 9 shows the curve y = f(x), where f(x) = e2x + k e−2x and k is a constant greater than 1.

 The curve crosses the y-axis at P and has a turning point Q.

y

xO

Q

P

Fig. 9

 (i)  Find the y-coordinate of P in terms of k. [1]

 (ii) Show that the x-coordinate of Q is 4
1 ln k, and find the y-coordinate in its simplest form. [5]

 (iii) Find, in terms of k, the area of the region enclosed by the curve, the x-axis, the y-axis and the line 
x = 12 ln k. Give your answer in the form ak + b. [4]

 The function g(x) is defined by g(x) = f(x + 4
1 ln k).

 (iv) (A) Show that g(x) = k  (e2x + e−2x). [3]

  (B) Hence show that g(x) is an even function.  [2]

  (C) Deduce, with reasons, a geometrical property of the curve y = f(x). [3]

END OF QUESTION PAPER
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Section B (36 marks)

8 (i)
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Annotations and abbreviations  
 

Annotation in scoris Meaning 

and  

 

 
Benefit of doubt 

 
Follow through 

 
Ignore subsequent working 

,  
Method mark awarded 0, 1 

,  
Accuracy mark awarded 0, 1 

,  
Independent mark awarded 0, 1 

 
Special case 

 
Omission sign 

 
Misread 

Highlighting  

  

Other abbreviations in 
mark scheme 

Meaning 

E1 Mark for explaining 

U1 Mark for correct units 

G1 Mark for a correct feature on a graph 

M1 dep* Method mark dependent on a previous mark, indicated by * 

cao Correct answer only 

oe Or equivalent 

rot Rounded or truncated 

soi Seen or implied 

www Without wrong working 
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Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand  
 
a Annotations should be used whenever appropriate during your marking. 

 
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full 
marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. 
   
For subsequent marking you must make it clear how you have arrived at the mark you have awarded. 
 

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to 
assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on 
the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be 
looked at and anything unfamiliar must be investigated thoroughly.  
 
Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method.  Such work 
must be carefully assessed.  When a candidate adopts a method which does not correspond to the mark scheme, award marks according to 
the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact 
your Team Leader. 
 

c The following types of marks are available. 
 
M  
A suitable method has been selected and applied in a manner which shows that the method is essentially understood.  Method marks are 
not usually lost for numerical errors, algebraic slips or errors in units.  However, it is not usually sufficient for a candidate just to indicate an 
intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by 
substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be 
specified.   
 
A  
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the 
associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. 
 
B  
Mark for a correct result or statement independent of Method marks. 
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E  
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment 
of an unknown result. 
 
Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is 
ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw.  However, this would not apply to a case where a 
candidate passes through the correct answer as part of a wrong argument. 
 

d When a part of a question has two or more ‘method’ steps, the M marks are in principle independent unless the scheme specifically says 
otherwise; and similarly where there are several B marks allocated.  (The notation ‘dep *’ is used to indicate that a particular mark is 
dependent on an earlier, asterisked, mark in the scheme.)  Of course, in practice it may happen that when a candidate has once gone 
wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given.  On the other hand, when 
two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given. 
 

e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results.  
Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted.  A (accuracy) marks are not 
given for answers obtained from incorrect working.  When A or B marks are awarded for work at an intermediate stage of a solution, there 
may be various alternatives that are equally acceptable.  In such cases, exactly what is acceptable will be detailed in the mark scheme 
rationale. If this is not the case please consult your Team Leader. 
 
Sometimes the answer to one part of a question is used in a later part of the same question.  In this case, A marks will often be ‘follow 
through’.  In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the 
image zone.  You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question. 
 

f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.  Candidates 
are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm.  Small 
variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be 
penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark.  The situation regarding 
any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, 
contact your Team Leader. 
 

g Rules for replaced work 
 
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as 
the candidate requests. 
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If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last 
(complete) attempt and ignore the others. 
 
NB Follow these maths-specific instructions rather than those in the assessor handbook. 
 

h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark 
according to the scheme but following through from the candidate’s data. A penalty is then applied; 1 mark is generally appropriate, though 
this may differ for some units.  This is achieved by withholding one A mark in the question. 
 
Note that a miscopy of the candidate’s own working is not a misread but an accuracy error. 
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Question Answer Marks Guidance 

1   
2

2

0
0

1 1
(1 cos )d 2sin

2 2
x x x x




 
   

 
  

 

B1 
1

2sin
2

x x
 
 

 
 

 

  

   
= 2sin [ 0]

2 4

 
   

M1 substituting limits (upper – lower) allow 1 slip  

   
= 2

2


  

A1cao must be exact, not 2 / 2  isw from correct answer seen  

    [3]   

2   fg(x) = ln(2 + ex) M1 condone missing brackets   

    ln(2 + ex) = 2x    

    2 + ex = e2x A1    

     

    e2x – ex – 2 [= 0] M1 Rearranging into a quadratic in ex may be implied from both correct roots

  

    (ex – 2)(ex + 1) = 0, ex = 2, −1 A1 obtaining roots 2, −1 −1 root may be inferred from factorising

  

    ex = 2, x = ln 2 A1 x = ln 2 only, not from ww x = ln (−1) is A0  

    [5]   

3   let u = ln x, u = 1/x, v= x−1/2, v = k x1/2 M1 soi  (k ≠ 0)               

   1/2 1/2 1/2 1
ln [d ] 2 ln 2 . [d ]x x x x x x x

x

       
A1                                                               

   1/2 1/22 ln 2 [d ]x x x x      M1 x1/2 / x = x−1/2 or 1/x1/2 seen   

   4
1/2 1/2

1
2 ln 4x x x   

 A1 2x
1/2

 ln x – 4x
1/2 

may be integrated separately 

   = 4 ln 4 – 8 – (2ln 1 – 4)     

   = 4 ln 4 − 4 A1cao oe (eg ln 256–4) but must evaluate ln1=0 mark final answer    

    [5]   
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Question Answer Marks Guidance 

4    

 

 

 

 

 

 

 

M1 

 

 

A1 

 

Sketch of y = 2x + 1 

 

 

y = −x and two intersections indicated 

 

condone no intercept labels, but must be 

a ‘V’ shape with vertex on −ve x axis  

   x = −1 B1 not from ww, condone (−1, 1) squaring: (2x+1)2 = x2  3x2 + 4x + 1= 0 

   x = −1/3 B1 not from ww, condone (−1/3, 1/3)  (3x+1)(x+1) = 0, x = −1, −1/3 

    [4] 

 

  

5 (i)  dV/dh = 4.½(h3 + 1)−1/2 .3h2  M1 chain rule 
their deriv of 4u1/2  their deriv of h3+1 

              
 

A1 correct   

    M1 substituting h = 2 into their derivative   

   when h = 2, dV/dh = 8 A1cao    

    [4]   

5 (ii)  dV/dt = 0.4 B1 soi condone r for t  

   dV/dt = dV/dh × dh/dt M1 o.e. any correct chain rule in V, h, t (or r) 

   0.4 = 8 × dh/dt  dh/dt = 0.05 (m per min) A1cao 0.05 or 1/20   

    [3]   

6 (i)  2cos2y dy/dx = 1 

 dy/dx = 1/(2cos2y) 

M1 

A1 

k cos 2y dy/dx = 1 or dx/dy = k cos2y , kcos2ydy = dx 

dy/dx = k cos2y is M0  

   when x = 1½, y = /12, dy/dx = 1/(2cos(/6)) M1* substituting y = /12 *dep 1st M1   

   = 1/√3 A1 or √3/3 isw from correct exact answer  

    [4]   

6 (ii)  2y = arcsin(x – 1) M1    

    y = ½ arcsin(x – 1) A1 or ½ sin−1(x – 1)   

   translation of 1 unit in positive x-direction B1 
or translation 

1

0

 
 
 

  
allow ‘shift’, but not ‘move’, vector only 

is B0  

   [one-way] stretch s.f. ½ in y-direction B1 

[4] 

not ‘shrink’, ‘squash’ etc transformations can be in either order 



4753 Mark Scheme June 2016 

9 

Question Answer Marks Guidance 

7   x2n – 1 = (xn − 1)(xn + 1) B1    

   one of  2n–1, 2n+1 is divisible by three M1  award notwithstanding false reasoning 

   2n – 1, 2n and 2n + 1 are consecutive integers; 

one must therefore be divisible by 3;  

but 2n is not, so one of the other two is 

 

A1 

A1 

 

 

if justified, correct reason must be given 

condone ‘factor’ for ‘multiple’  

   or 

2n is not div by 3, and so has remainder 1 or 2 

when divided by 3; if remainder is 1, 2n – 1 is 

div by 3; if remainder is 2, then 2n +1 is div by 3 

 

A2 

 

   

   [so 22n – 1 is divisible by 3]  

[4] 

   

8 (i)  1/2 1/2

1/2 2

1
( 4) .1 . ( 4)

d 2

d [( 4) ]

x x x
y

x x

  




 

M1 

 

B1 

A1 

quotient rule: v  their u − u  their v , 
 and correct denominator 

½ u−1/2 soi 

correct expression 

or product rule  

 

or −½ u−3/2  (PR)  

PR: x(−½ ) (x+4)−3/2 +(x+4)−1/2  

   

3/2 3/2 3/2

1 1
4 4

82 2

( 4) ( 4) 2( 4)

x x x
x

x x x

  


  
  

* 

 

M1 

A1 

 

factoring out (x + 4)−1/2 o.e. 

NB AG 

 

= (x+4)−3/2( −½ x + x + 4)  

  

    [5]   

8 (ii)  [asymptote is] x = −4 B1 soi but from correct working 

   gradient of tangent at O= 8/(2×43/2) = ½  B1 gradient = ½    

   eqn of tangent is y = ½ x B1 o.e. e.g. using gradient   

   When x = −4, y = −2, so (−4, −2)  B1    

    [4]   
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Question Answer Marks Guidance 

8 (iii)  let u = x + 4, du = dx 

 
5 9

1/2 1/20 4

4
d d

( 4)

x u
x u

x u




   

B1 

 

 

B1 

or dx/du = 1 

 

1/2

4
[d ]

u
u

u


  

or v2 = x+4, 2vdv/dx = 1 or 2vdv = dx oe 

e.g. dv/dx = ½ (x+4)−1/2 
2 4

2 [d ]
v

v v
v


   

   9
1/2 1/2

4
( 4 )du u u    

B1 

 

u1/2 – 4u−1/2 or u1/2 – 4/u1/2, or √u – 4/√u 
2(2 8)[d ]v v    

   9

3/2 1/2

4

2
8

3
u u

 
  
 

 
 

B1 
3/2 1/22

8
3

u u
 

 
 

o.e. 32
8

3
v v

 
 

 
  

   = (18 – 24) – (16/3 – 16) M1 substituting correct limits (upper – lower) 0, 5 for x; 4,9 for u; 2,3 for v  

   = 14/3 A1cao    

   or (following first 2 marks) 
1/2 1/2let 4, , 1, 2v u w u v w u       

9 99
1/2 1/2 1/2

44 4
( 4) d 2 ( 4) 2 du u u u u u u         

 

M1 

 

A1 

 

 by parts with no substitution: 

u =x,u=1,v = (x+4)
−1/2

,v= 2(x+4)
1/2

 M1 

=[2x(x+4)1/2] − 2(x+4)1/2 A1 
5

1/2 3/2

0

4
2 ( 4) ( 4)

3
x x x

 
    
 

 A1 

   9

1/2 3/2

4

4
2 ( 4)

3
u u u

 
   
 

 
 

A1 

 =14/3 A1 (so max of 4/6) 

   = 14/3 A1cao   

    

y- coordinate of Q is 2½   

Area of triangle = ½ × 5 × 5/2 = 25/4 

 

B1 

B1 

 

(soi) 
or   

5

0

1
d

2
x x     M1   

5

2

0

1

4
x

 
  
 

 = 25/4      A1                     

   Enclosed area = 25/4 – 14/3 = 7
1

12
 B1 or 19/12, or 1.583  isw from correct exact answer  

    [9]   
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Question Answer Marks Guidance 

9 (i)  1 + k B1    

    [1]   

9 (ii)  f(x) = 2 e2x – 2 k e−2x B1    

   f(x) = 0  2 e2x – 2 k e−2x = 0      M1 their derivative = 0   

    e2x = k e−2x      

    e4x = k , 4x = ln k, x = ¼ ln k * A1 NB AG   

   y = e( ½ ln k) + k e(− ½ ln k)  M1 substituting x = ¼ ln k into f(x)   

   = √k + k/√k = 2√k A1cao or 2k1/2   

    [5]   

9 (iii)  
Area = 

1
ln

2 22

0
( )[d ]

k
x xe ke x  

 

B1 

 

correct integral and limits (soi) 

  

   
=

1
ln1

2ln
2 2 2 22

0
0

1 1
( )d

2 2

k
k

x x x xe ke x e ke  
   

 
  

 

B1 
2 21 1

2 2

x xe ke 
 

 
 

 

  

   = ½ k – ½ − ½ + ½ k  

= k – 1  

M1 

A1 

elnk = k or e−lnk = 1/k (soi) 

 

  

  

    [4]   

9 (iv) (A) g(x) = e2(x + ¼ ln k) + ke−2(x + ¼ ln k) M1 Substitute  x + ¼ ln k  for x in f(x) condone missing brackets  

          = e2x.e ½ ln k + k e−2x. e−½ ln k  M1 ep+q = epeq used   

          = (eln k)1/2 e2x + k.(eln k)−1/2  e−2x    

          = k1/2 e2x + k.k−1/2. e−2x 

       = √k (e2x + e−2x) * 

 

A1 

 

NB AG – must show enough working 

 

e.g.  k1/2 e2x + k.k−1/2. e−2x  

    [3]   

9 (iv) (B) g(−x) = √k (e−2x + e2x) 

         = g(x) so g is even 

M1 

A1 

substituting −x for x  

must include g(−x) = g(x), and either 

define an even function or conclude that g 

is even 

condone ‘f’ used instead of ‘g’ for M1 

not f(−x) = f(x) for A1  

 

    [2]    

9 (iv) (C) g(x) is symmetrical about the y-axis, and B1      

   f(x) is g(x) translated ¼ ln k in x-direction 

so f(x) is symmetrical about x = ¼ ln k 

B1 

B1 

allow ‘shift’ or ‘move’ 

allow final B1 even if unsupported 

or g is f translated – ¼ ln k 

or incorrectly supported  

    [3] 
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4753 Methods for Advanced Mathematics (C3 Written 
Examination) 

General Comments: 
 
There was a very pleasing standard of work produced on this paper. The majority of candidates 
were clearly well prepared, and there were many excellent scripts, with a fifth of the candidates 
scoring over 65 marks, and 90% scoring over 30 marks. There appeared to be an improvement in 
performance on some topics, such as the modulus function, implicit differentiation and inverse 
trigonometric functions. There was little evidence of learners running out of time. Standards of 
presentation were as variable as ever, but many scripts were well presented and clearly argued. 
 
Candidates sometimes offer repeated attempts at questions. Under these circumstances, learners 
should be told to cross out the ones which they do not wish to be marked. Otherwise, we mark the 
final complete attempt, notwithstanding if it scores fewer marks than previous ones! 
 
Comments on Individual Questions: 
 
Section A 
 
1. This proved to be a straightforward starter question, with 80% of candidates scoring full marks.  
Some candidates stopped at π/2+2 sinπ/4, presumably because they did not appreciate that ‘value 
of’ means numerical. A few weaker candidates confused differentiation and integration, either 
giving the wrong coefficient or sign for the sin x/2 term. 
 
2. Virtually all candidates formed the composite function in the correct order to obtain  
fg(x) = ln(2+ex). A few then simplified this to ln2 + x and therefore made no further progress. Of 
those who did correctly proceed to 2 + ex = e2x, a substantial minority then incorrectly took logs of 
each side to reach ln2 + x = 2x. Of those who correctly rearranged the equation into a quadratic in 
ex, nearly all then gained full marks, correctly rejecting the ex = −1 solution. 
 
3. Integration by parts was well understood, with just under half candidates scoring full marks for 
this question. Very occasionally, candidates took u = x−1/2 and v’ = ln x, and were unable to score 
any marks. With u and v correct, the next hurdle is to simplify the 2x1/2.1/x integrand, and some 
failed at this stage, and attempted to integrate the product term by term. Having negotiated this 
successfully, most got full marks, though very occasionally the final answer was spoiled by using 
4ln4 = ln16. 
 
4. Sketches of the modulus function with y = −x were generally well done, though quite a few lost a 
mark for neither clearly indicating the intercepts nor making a clear statement that there were two 
of them. The roots were then usually found correctly, with less evidence of faulty modulus algebra 
than in recent years. 
 
5. This question was extremely well answered, with the majority of candidates scoring full marks. 
 
5(i). The chain rule on V was successfully negotiated by over half the candidates, and then 
correctly evaluated at x = 2. 
 
5(ii). Virtually everyone who scored 4 for part (i) went on to apply the chain rule dV/dt = dV/dh × 
dh/dt, or some variation of it, to get full marks here. The rest usually earned the first two of the 
three marks. 
 
6. This question as also very well done, with half the candidates scoring full marks.  
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6(i). The implicit differentiation was well understood, though there were the usual blemishes from 
mixing up the derivative and integral formulae for sin 2y. A few candidates re-arranged the 
equation to get x in terms of y, then found dx/dy, and then the reciprocal dy/dx. 
 
6(ii). Re-arranging the given implicit equation to give y = ½ arcsin(x – 1) was well understood, and 
the transformations were usually accurately described. Note that the preferred terms here are 
‘translation’ and ‘one-way stretch’. 
 
7. The first B1 for factorising x2n – 1 was well done, but convincing proofs of the divisibility of 22n – 1 
by 3 were few and far between. We awarded M1 if candidates recognised that either 2n–1 or 2n+1 
were divisible by 3, and two ‘A’ marks for proving this. The next ‘A’ mark was gained for stating that 
the consecutive numbers 2n−1, 2n and 2n+1 must include a multiple of 3, and the final mark for 
stating that 2n is not divisible by 3; however, many candidates wrongly stated that 2n was even and 
therefore not divisible by 3, or that two consecutive odd numbers must include a multiple of 3. The 
most elegant alternative solution seen was:  
 

x2n – 1 = (x2 – 1)(x2n-2 + x2n−4 + …+ 1)  22n – 1 = (22−1)(22n-2 + 22n-4+ … + 1) = 3m, where m is an 
integer.  
 
The language used by candidates in their explanations was often rather imprecise. In particular, the 
terms ‘factor’ and ‘multiple’ were often used incorrectly. 
 
Section B 
 
8. Most candidates scored well on this question, which covered calculus topics such as the product 
or quotient rule for differentiation and integration by substitution, which are generally well 
understood by learners.  
 
8(i). The first three marks here were usually earned, though a minority of weaker candidates mixed 
up the product and quotient rules, for example using v = (x+4)−1/2 in their quotient rule. The 
factorisation required to achieve the given result was less successfully done, but just over half the 
candidates still managed full marks here. There were a lot of repeated attempts at this, for example 
using the product rule when they got stuck with manipulating their quotient rule expression. 
 
8(ii). This proved to be a straightforward 4 marks earned by over 70% of scripts. The asymptote 
and the gradient and equation of the tangent at the origin were usually correctly found, followed by 
the coordinates of Q. 
 
8(iii). This 9-mark question required careful extended work from candidates, but there was a 
pleasing response, with just under half the scripts earning full marks. The first six of these were for 
finding the area under the function using substitution. Here, as usual, notation sometimes left 
something to be desired, with missing du’s or dx’s, integral signs, inconsistent limits, etc. Most of 
this we condoned, but we did require du/dx = 1 or its equivalent to be stated. The final three marks 
depended upon the correct coordinates for the point Q being found in part (ii). Occasionally the 

triangle area was found using  ½ x dx. 
 
9. The calculus here was not particularly demanding, requiring only the derivative and integral of 
ekx; but the simplification of expressions using the laws of logarithms and exponentials proved to be 
quite testing and found out quite a few candidates. 
 
9(i). This was an easy write-down for virtually all candidates, except those few who did not know 
that e0 = 1. 
 
9(ii). The first two marks were pretty universally earned, but deriving x = ¼ ln k, together with the 
final ‘A’ mark for getting 2√k, caused a few problems, with some inaccurate logarithm work. For 
example, e1/2 lnk = ½ k was a commonly seen misconception. 
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9(iii). The integration was usually correct, but, thereafter, as in part (ii), the simplification to arrive at 
k – 1 proved to be tricky, with similar errors being made. 
 
9(iv)(A). Most attempts correctly substituted x + ¼ ln k for x in f(x) to gain the first M mark, but we 
needed to see clear evidence of how this simplifies to the given result. Often candidates seemed to 
be working backwards from this without really understanding the process. 
 
9(iv)(B). The definition of an even function was well known, but sometimes the structuring of the 
proof was indecisively presented. Some used ‘f’ instead of ‘g’ (here, f is indeed not an even 
function!), and we required to see either a clear statement of the definition of an even function, or a 

clear conclusion that g is therefore even. The structure ‘g(-x) = … = … = g(x)   g is even’ is the 
most transparent formulation to use in such proofs, rather than starting them by stating that  
g(-x) = g(x), viz the result they are trying to prove! 
 
9(iv)(C). The argument here proved beyond most candidates, with only 20% getting full marks. 
Many stated that f was an even function, perhaps thinking that any line of symmetry sufficed. 
Sometimes it was indeed a little difficult to decide whether candidates were referring to f or g in 
their answers. 
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